Optimization-Based Model Fitting for Latent Class and Latent Profile Analyses.

نویسندگان

  • Guan-Hua Huang
  • Su-Mei Wang
  • Chung-Chu Hsu
چکیده

Statisticians typically estimate the parameters of latent class and latent profile models using the Expectation-Maximization algorithm. This paper proposes an alternative two-stage approach to model fitting. The first stage uses the modified k-means and hierarchical clustering algorithms to identify the latent classes that best satisfy the conditional independence assumption underlying the latent variable model. The second stage then uses mixture modeling treating the class membership as known. The proposed approach is theoretically justifiable, directly checks the conditional independence assumption, and converges much faster than the full likelihood approach when analyzing high-dimensional data. This paper also develops a new classification rule based on latent variable models. The proposed classification procedure reduces the dimensionality of measured data and explicitly recognizes the heterogeneous nature of the complex disease, which makes it perfect for analyzing high-throughput genomic data. Simulation studies and real data analysis demonstrate the advantages of the proposed method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An application of Measurement error evaluation using latent class analysis

‎Latent class analysis (LCA) is a method of evaluating non sampling errors‎, ‎especially measurement error in categorical data‎. ‎Biemer (2011) introduced four latent class modeling approaches‎: ‎probability model parameterization‎, ‎log linear model‎, ‎modified path model‎, ‎and graphical model using path diagrams‎. ‎These models are interchangeable‎. ‎Latent class probability models express l...

متن کامل

Mixture of latent trait analyzers for model-based clustering of categorical data

Model-based clustering methods for continuous data are well established and commonly used in a wide range of applications. However, model-based clustering methods for categorical data are less standard. Latent class analysis is a commonly used method for model-based clustering of binary data and/or categorical data, but due to an assumed local independence structure there may not be a correspon...

متن کامل

Using multivariate generalized linear latent variable models to measure the difference in event count for stranded marine animals

BACKGROUND AND OBJECTIVES: The classification of marine animals as protected species makes data and information on them to be very important. Therefore, this led to the need to retrieve and understand the data on the event counts for stranded marine animals based on location emergence, number of individuals, behavior, and threats to their presence. Whales are g...

متن کامل

Latent class representation of the Grade of Membership model

Latent class and the Grade of Membership (GoM) models are two examples of latent structure models. Latent class models are discrete mixture models. The GoM model has been originally developed as an extension of latent class models to a continuous mixture. This note describes a constrained latent class model which is equivalent to the GoM model, and provides a detailed proof of this equivalence....

متن کامل

Semantic Noise Modeling for Better Representation Learning

Latent representation learned from multi-layered neural networks via hierarchical feature abstraction enables recent success of deep learning. Under the deep learning framework, generalization performance highly depends on the learned latent representation which is obtained from an appropriate training scenario with a taskspecific objective on a designed network model. In this work, we propose ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Psychometrika

دوره 76 4  شماره 

صفحات  -

تاریخ انتشار 2011